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1 Introduction

A search of a decision tree can be used to solve complicated problems

involving multiple decisions. It is the only known effective approach

to computer chess, for example. The method typically operates on the

brink of combinatorial explosion, however. In its basic form its

computation time increases exponentially or factorially, depending on

the number of choices at each level of the tree. For that reason,

considerable effort is often spent in reducing the size of the tree.

m

Donald Knuth has pointed out in [KNUT75J that the efficiency of

backtracking algorithms, to which decision-tree search belongs, is very

sensitive to small modifications. We have devised an efficient

backtracking method for one application, and feel it should be recorded.

We encountered a tree search problem while investigating a database

performance question.

Database management systems (DBMS) control and facilitate access to a

collection of data that is integrated and shared [DATE81]. Concurrency """

is the simultaneous or interleaved execution of more than one process.

A transaction is the logical unit of execution in a database system;

examples would include displaying the balance in one account, posting

interest to all accounts, or finding all those items from a particular

supplier where the inventory has fallen below the reorder point.

Concurrency control is the handling of concurrent transactions so as to

produce the same results as nonconcurrent execution [DATE83, BERN81).
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Sequential machines perform one computation at a time. Most existing

machines are sequential. The second and third transactions described

above, however, involve performing the same operation on many data

items. Making such transactions into sequences involves choosing an

order. If some of the individual data items are unavailable at certain .

times because of being used by other transactions, the choice of order

is important to performance.

1.1 Optimality

We wish to determine the time required for the processing of a

transaction provided the optimal order of access is used. No actual

transaction manager can have sufficient information to achieve

optimality in all cases, but optimality provides a useful standard of

comparison.

However, even given knowledge of when each data item will be locked,
-. % i

computation of optimal time is not trivial.

2. The algorithm

We decided to develop an algorithm that would always produce the correct

result and would nearly always compute it in acceptable time.

2.1 Decision tree search

One way of finding an optimal solution to a complicated problem is to

create a decision tree and search it exhaustively.

2.1.1 Creating a decision tree

2
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A tree is a directed acyclic graph in which one node (the root) has no

parent and each other node has exactly one parent. Intuitively, it is a

diagram of a branching-out from a starting point. A decision tree

represents a series of decisions, with branches representing particular

choices. Given three data items, A, B, and C, Figure 1 shows a decision

tree for order of processing. The leftmost branch represents A, B, C.

/\

A/ \
/ B

/ I \'

B/ \C A/ \C A/ \B
*I * * I I *

C B C :A lB IA

Figure 1

2.1.2 Exhaustive search

Assume each terminal node has a value. In the example, the value would

be time required to process in that order. To find the minimum of

those, one could use the recursive function Search:

3
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Function Search(Tree : Tree type) : Integer;
Var Val, Min : Integer; Pos : Tree-type;
Begin

If this is a terminal node then
Search Value of this node

Else begin
Min := Maxint;

While Possibilities remain untried do begin
Select an untried choice, called Pos;
Val := Search(Pos);
If Val < Min then Min Val

End;
Search "= Min

End
End;

A

Algorithm 1

This algorithm always produces correct results, but operates in O(N!)

time, where N is the number of data items. This is not acceptable

performance.

* 2.1.3 Tree pruning

The performance of tree-searching algorithms may be improved by

recognizing branches that do not contribute to the result and not

searching those branches. This is called pruning. In the most general

case, where only terminal nodes have values and no lower-bound

calculations may be made, pruning is not possible. As more knowledge of

the actual situation becomes available, however, some pruning becomes

possible.

We have found ways to prune away nearly the entire tree.

2.1.4 Lower bound

*= A valid lower bound on the value of a tree (optimal time, in this case)

- can greatly reduce the time needed to search the tree. As soon as a way

4,. .- *. . . . . * *
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is discovered to achieve the lower bound, the search may be abandoned

since no better result can be achieved. Also, if a path has already

been found with a total cost as low as can possibly be achieved in this

branch, the search of this branch may be abandoned. Since these

considerations apply at any level of the search, we may express them as

another recursive function.

Var
Pathcost : Integer; [ Initialize to 0 ,

Cutoff : Integer; { Initialize to Maxint }
Function Search(Tree : Tree type) : Integer;

¥ar
Uni_ cost, Best Path, Lowerbound, Pathtime : Integer;
Which : Treetype;

Begin
If this is a terminal node then begin

Unit cost := cost associated with this node;
If Path cost+Unit cost < Cutoff then

Cutoff := Path-cost + Unit cost;
Search :: Unit cost

End
Else begin { Choices remain }

Best path Maxint;
Compute Lowerbound;
If Path cost + Lowerbound < Cutoff then begin { Cutoff .

Arrange the possible choices in a good order;
While choices remain and (Best Path>Lowerbound) do begin

Select next possibility, call it Which;
Unit cost :: cost associated with Which;
Path cost Path cost + Unit cost;
Pathtime Search(Which);

If Pathtime < Best Path - Unit cost then
BestPath := Pat-htime + Unit cost;

Path-cost :: Path cost - Unit cost

End
End;
Search BestPath

End

End;

Algorithm 2

2.2 Optimization under Algorithm 2

The performance of Algorithm 2 depends on two factors:

1. The ordering of the choices

5
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2. The accuracy of Lowerbound

2.2.1 Selection order

If only one branch of the tree produces optimal time, we would like to

examine that branch early. If we always search the wrong branch, we

still have to examine the entire tree! A good a priori ordering is

possible in our application. Of course, if we could guarantee selecting

the best order beforehand we would not need to search the tree, but we

have discovered no method to achieve that.

2.2.2 Lowerbound

A valid lower bound for a tree search will never exceed the actual value

of the tree. Given an invalid quantity as Lowerbound, Algorithm 2 will

return that instead of the correct answer. On the other hand, a valid

lower bound which can never be achieved will result in no pruning. The

greatest lower bound of the value of the tree is in fact the value of

the tree, and this is the only value that results in any pruning. Our

computation can be very fast, provided we already know the answer.

This is much more helpful than it sounds, though, because it holds at

all levels of the tree. Even if we can do no pruning at the top level,

we may prune very severely at the next.

A perfect algorithm for determining Lowerbound would eliminate the need

for a tree search.

3 Our application

..)..;..;..;..:.. . .... .. . . . . . .... .... . . . . .-.-.. . . . . . . . . . . . . . . . . .===:::



We wished to apply tree search with pruning to our database application.

To explain, we must first tell something about the application itself.

3.1 The simulation

We have simulated algorithms for database lock managers and the routines I.

that use them. The various routines simulate processing simulated

transactions. The important features of a transaction in the simulation

have to do with the various data items accessed; we call these Lockable I.

Units, or LU's.

A transaction has some number of LU's. This number is specified as a S

parameter. Each LU has associated with it a processing delay, which

represents the time required to process the data in that unit. Each LU

may also have some adverse activity. That represents other transactions

ac.essing the unit in a way incompatible with our transaction's planned

access. These quantities are generated at random. Some LU's are

represented as having fixed-length queues; these are very high-activity

data items. There is a minimum time required to acquire any data item,

which we have set at one time unit. Table 1 represents an example of a

transaction.

7
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I.

Transaction (6 steady-state queue of given length)
Unit Delay Activity Activity Activity

1 10 86
2 4 90 - 247 250 - .5 330 - 445
3 8 96
4 4 220 -282 310 -393 520 -579
5 12 150 - 276 570 - 630 -

Table 1

4 The method

To find optimal time, we first assume that all queues are entered at

transaction initiation, thus changing all asterisks in Table 1 to

zeroes, and then perform a tree search.

4.1 Ordering of alternatives

At a given moment, each lockable unit is in one of three states:

1. Available now, but will become unavailable.

2. Available now and at all future times.

3. Not now available.

We select first those in state 1, in ascending order of when they will

become unavailable; then state 2, in ascending order of processing

delay; and then state 3, in order of when they will become available.

That is an optimal order a high percentage of the time. The example

transaction would be ordered initially 2-5-4-1-3.

4.2 Computation of Lowerbound

Optimal performance for the example transaction is 105 time units. LU's

* .2, 5, and 4 are acquired and processed in 23 time units. LU1 is

acquired at time 86, and processing is completed at 96. LU3 is then

immediately available, so acquiring it takes one time unit; processing

8-I.. . : * *.*.



it takes 8, for a total of 105.

I

We compute Lowerbound as follows:

Create a record for each remaining LU, consisting of a field
representing the time necessary to acquire a lock on that item

(LU.When avail) and a field for its processing delay (LU.Delay).
Sort on When avail, descending.
Cum Delay ::-0;
Lowerbound := 0;
While records remain do begin

Get an LU record;
CumDelay := CumDelay + LU.Delay;
If LU.When avail + Cum Delay > Lowerbound then

Lowerbound := LU.When avail + Cum _Delay;
CumDelay := CumDelay + Minlockacquisition time

End

Algorithm 3

Testing this with the example transaction shows why the last line in the

While is necessary.

Unit Delay WhenAvail CumDelay__1 CumDelay_2 Col.2+Col.3 Lowerbnd
3 8 96 8 9 104 104
1 10 86 19 20 105 105
2 4 1 24 25 25 105
4 4 1 29 30 30 105
5 12 1 42 43 43 105

Table 2

9
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A P P E N D I X A

Optimal Simulator Using Tree Search With Cutoffs

I$INCLUDE:' B:LOCGLBLS.DOC')
{$INCLUDE:'B:LOCTMCAL.DOC'}

{ Module containing code to simulate OPTIMAL. '1

Module Locopt;
Uses Globids, Tmcal;

Function Max(A, B : Integer) : Integer; Extern;

Procedure Optimal(LU Num : Integer);

{* OPTIMAL determines a lower bound on processing the given }
{J transaction using locks. By assumption it uses only as I} ,
{m many lock requests as there are lockable units and gets }
{I into all queues at initiation time. It does a search of l} "
{I the decision tree of orders of lock requests to find one *} <. J
{m that results in the least delay. The tree search selects }•
{l a first order of requests that is likely to be good, and *}
{I performs forward pruning according to two criteria; its i}
{1 worst-case performance is O(NI), but is usually O(N).

{m OPTIMAL contains the recursive tree search Findbest, which i
{I in turn contains Sort. .;

Type .
Low Rec Record

When Integer;
Proc 3..15

End;

Var p
Cutoff Integer; { Best time so far. If it can't I

be undercut, prune.:-
I : Integer;
Remaining : Unit Range; Units remaining to be processed }
Done : Boolarray;
LowVec : Array[O..MaxUnitsJ of LowRec;

- Used in computing Lowerbound }

Function Findbest Integer;[{~l*1**11ll*3111**1 Jllllll**llljl lnlltlll} "-:..

{* Recursive decision tree search, with cutoffs. 1

Type

13
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. . . .-. .

O

ND Rec = Record { Units not yet done, weights }
U : UnitRange;
Val : Integer -

End; S
ND Vec Array[UnitRange] of ND Rec;

Var
Getlock, BestPath, Lowerbound, Pathtime : Integer;
Cursor : O..MaxUnits;
I : UnitRange; 0
Notdone : NDVec;
P : T LPtr;
J, Cum Delay : Integer;

Procedure Sort(Var Tosort : ND Vec; N : Unit Range);

{* Linear insertion sort, in place. An O(N"02) sort 0}
{* makes sense here, since it will be called far }.
{u more times with small N than with large. This })
{0 sort beats Shellsort and Quicksort for N less })
10 than about 15, and N will seldom be that large. )

Var
I, J, TempVal : Integer;
TempU : UnitRange;

Begin
For I : 1 to N-1 do begin { Elements 1..I are in order }

TempU := Tosort(I+1].U;
TempVal :: Tosort[I+1].Val;
J := I;
While TempVal < Tosort[J].Val do begin

Tosort[J+1].U := Tosort[j].U;
Tosort[J+l].Val := Tosort[J].Val;
J := J - 1;
If J < 1 then Break { Nonstandard: Leave innermost loop )

End; { While }
Tosort[J+1].U := TempU;
Tosort[J+1.Val := TempVal

End {For I ....
End; •

Begin { Findbest }
If Remaining = 1 then begin

(Only one unit remains }
I := 1; While Done[I] do I := I + 1;
Getlock := LMO(M) + Delay[I]; j LMO = time to acquire lock }
If Present time + Getlock < Cutoff then

Cutoff : Presenttime + Getlock;
Findbest :: Getlock

End { Else if Remaining =1 ... }
Else begin

14
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tMore than one unit remains
Best Path Maxint;
Lowerbound :=0;
Cursor 0;

ICompute Lowerbound
For 1 : 1 to LU Num do

If Not Done(Ij then begin
ILinear insertion according to when available

Cum Delay := LMO(I);
LowVecEOJ.When ::Cum -Delay;
Low_-Vec(O).Proc :~Delay[I];
J := Cursor;
While LowVec[J].When <.CumDelay do begin

Low_-Vec[Ja.) : LowVec(JJ;
J := J 1

End; {While S
Cursor :Cursor + 1;
LowVecEJ,1) := Low VecEOJ

End; IEnd linear insejrtion
CumDelay := 0;
For I := ito Cursor do begin

CumDelay := CumDelay + LowVec(IJ.Proc;
Lowerbound ::MaxCLowerbound, LowVec[IJ.When +CumDelay);
CumDelay :~Cum Delay + Lock RequestDelay

End;
I End computation of Lowerbound

If Present time + Lowerbound < Cutoff then begin IA pruning
[-Arrange those units not processedI
IGenerate weights: Time of next locking for units
I that are unlocked but which will be locked again

(Note crystal ball), Processing-time + 9000
Ifor those that are available and will not become
Iunavailable, and Release-time + 10000 for those

that are presently locked.
Cursor :0;
For 1 : 1 to LUNum do

If Not Done[I] then begin
Cursor := Cursor +. 1;
Notdone[CursorJ.U := I;
If UnitsEIJ = Nil then

Notdone(Cursor).Val :=Delay[I] 4 9000
Else if CUnits[I]^.Next Nil)

and (UnitsEIY^.Time <= Present time)
then Notdone[CursorJ.Val := DelayEfIJ + 9000

Else if Units[IJ^.Next Nil then
NotdoneECursorJ.Val :Units(I]^.Tirne + 10000

Else begin
P := Uflitsl];
While (P-.Next'.Time <= Present time)

and (PA.NxtNext^.Net 0 Nil)
do P :P^.NextA.Next;

{PT 0)

15
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If P-.Time > Present time then
Notdone[Cursor].Va1 := P^.Time

( PT)
Else if P^.Next^.Time > Present time then

Notdone[Cursorj.Val 22P*.NextA.Time + 10000
0 C PT

Else Notdone[Cursor).Val ::Delay[I] . 9000
End tElse

End;-, Then

tSort according to weights
Sort(Notdone, Cursor);

j Search for optimal order, cutting of f if equal to
{ a previously-computed lower bound or if unable to -

{ better the best previous time.
I ~1;

While (I <= Cursor) and (BestPath > Lowerbound) do begin
Getlock ::LMoCNotdone[I].'U) e Delay[Notdone(I].U];

ISimulate processing the unit
Done[Notdone[I).UJ := True;
Present time := Present time +. Getlock;
Remaining := Remaining -1

{Recurse
Pathtime :~Findbest;

IRecord best found so far
If Pathtime < BestPath - Getlock then

BestPath := Pathtime + Getlock;
IUndo

Done[Notdone(I).U] : False;
Present time := Present time -Getlock;

Remaining := Remaining + 1;
{Increment loop control

I ~I + 1
End (Whilel

End; {ThenI
Findbest := BestPath

End {Else
End; IFindbestI

Begin IOptimal
IInitializations

Remaining ::LUHum;
Cutoff := Maxint;
PresentTime := 0;
For I := 1 to LUNum do begin

Done[I] False;
Avail[Il : Maxint;

(Start all queues
If Units(I] 0> Nil then if UnitsEIJA.Next Nil then

End;

16



{Call recursive tree search}
I :~Findbest;

Opteva1(FLOATCCutoff), FLOAT(LU Mum)); j Record, for comparison
Accumulate(Cutoff, LU Num, 0);
Summary Stats( FLOAT(Cutoff), FLOAT( LU Num))

End; (Optimal
-i4

End. (Module Locopt I

4a

A
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{' Interface that supplies global identifiers to all those *)
(6 program units that need them. Important consts and

I types are included, but also the files, lockable unit '1
(* information Units, availability, processing delay, and *}
{' the scalars Lock Request Delay (presently 1), number of }-
{' lockable units LU No, and Present time.

Interface;
Unit Globids(Max Units, Algos, Unit Range, T_L_Ptr, Time list,

Un Vec, Boolarray, Intarray, Detailfile, Summaryfile, Units,
Lock_Request-delay, Presenttime, Avail, Delay, LUNo);

Const
MaxUnits 100; 1 Max lockable units (arbitrary))
Algos = 8; { Number of algorithms }

Type

Unit Range 1..Max Units;
T_L_Ptr = ̂ Time list; { Time node for linked list }
Time list = Record

Time : Integer;
Next : T L Ptr

End;

Un_Vec Array[UnitRange] of T_L_Ptr;
{ Array of time lists }

Boolarray Array[UnitRange] of Boolean;
j Type for Done, used in subprograms

Intarray Array[UnitRange) of Integer;
{ Used for Avail and Delay }

Var
DetailFile, SummaryFile : Text; I Oubput files }
Units : UnVec; { Availability of lockable units:

4.-----------+-------- ----------- ----- -- ----- ------------ ---- ------- +-- - - - - ----------- .--- ---- - ----------

III ""

+--- ---0. - ----- V+--110 , 0 1 20 1 1
II l I .

+ -+-V-+ +-
Always - Always 1 180 1 140 . -

available available --.. +----.
Queue of +.----+-V-+ +----+-V-+
length 110 I 300 + . 1 lMxintl ."

I I%

...+-V-+ ----- --+ 4.-...-V-+"""

1 450 • I -
Locked from 0 to 180 +----

and > +---- . -V-+ Locked
300 to 450 IMxintl .I from

+----+-z-. 20 to 1o

LockRequestDelay : Integer; { Minimum lock acquisition time
(value:1) .

18
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Present time : Integer; { Simulated clock }
Avail, Delay : Intarray; j When available, Processing delay .

LUNo : Integer;

I

• ..

Begi~n•..
End ; . .

L
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